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Abstract

As a fundamental task of vision-based perception, 3D oc-
cupancy prediction reconstructs 3D structures of surround-
ing environments. It provides detailed information for au-
tonomous driving planning and navigation. However, most
existing methods heavily rely on the LiDAR point clouds to
generate occupancy ground truth, which is not available
in the vision-based system. In this paper, we propose an
OccNeRF method for self-supervised multi-camera occu-
pancy prediction. Different from bounded 3D occupancy
labels, we need to consider unbounded scenes with raw im-
age supervision. To solve the issue, we parameterize the re-
constructed occupancy fields and reorganize the sampling
strategy. The neural rendering is adopted to convert oc-
cupancy fields to multi-camera depth maps, supervised by
multi-frame photometric consistency. Moreover, for seman-
tic occupancy prediction, we design several strategies to
polish the prompts and filter the outputs of a pretrained
open-vocabulary 2D segmentation model. Extensive experi-
ments for both self-supervised depth estimation and seman-
tic occupancy prediction tasks on nuScenes dataset demon-
strate the effectiveness of our method. Code is available at
https://github.com/LinShan-Bin/OccNeRF.

1. Introduction
Recent years have witnessed the great process of au-
tonomous driving [37, 39, 45, 78]. As a crucial compo-
nent, 3D perception helps the model to understand the real
3D world. Although LiDAR provides a direct means to cap-
ture the geometric data, its adoption is hindered by the ex-

*Equal contribution.
†Work done during Juncheng Yan’s internship at Xiaomi Car.
‡Corresponding author.

Figure 1. The overview of OccNeRF. To represent unbounded
scenes, we propose a parameterized coordinate to contract infinite
space to the bounded occupancy fields. Without using any an-
notated labels, we leverage temporal photometric constraints and
pretrained open-vocabulary segmentation models to provide geo-
metric and semantic supervision.

pense of sensors and the sparsity of scanned points. In con-
trast, as a cheap while effective solution, the vision-centric
methods [1, 27, 40, 45, 85] have received more and more
attention. Among various 3D scene understanding tasks,
multi-camera 3D object detection [28, 37, 39, 44] plays an
important role in autonomous systems. However, it strug-
gles to detect objects from infinite classes and suffer from
long-tail problem.

Complementary to 3D object detection, 3D occupancy
prediction [8, 67, 73, 86] reconstructs the geometric struc-
ture of surrounding scenes, which can facilitate downstream
tasks. As mentioned in [78], 3D occupancy is a good 3D
representation for multi-camera scene reconstruction since
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it has the potential to reconstruct occluded parts and guar-
antees multi-camera consistency. Recently, some methods
have been proposed to lift image features to the 3D space
and further predict 3D occupancy. However, most of these
methods need 3D supervision. Although some previous
works [67, 78] autolabel the occupancy ground truth by ac-
cumulating multi-frame LiDAR points, we cannot use Li-
DAR sensors in vision-centric systems. In other words, we
need special vehicles that equip LiDARs to collect data,
which is expensive and wastes a large amount of unlabeled
multi-camera images. Therefore, it is a valuable direction
to explore self-supervised occupancy prediction with only
image data.

To address this, we propose an OccNeRF method, which
targets at self-supervised multi-camera occupancy predic-
tion. We first utilize a 2D backbone to extract multi-camera
2D features. To save memory, we directly interpolate 2D
features to obtain 3D volume features instead of using
heavy cross-view attention. In previous works, the volume
features are supervised by the bounded occupancy labels
(e.g. 50m range) and they only need to predict the occu-
pancy with finite resolution (e.g. 200 × 200 × 16). Differ-
ently, for self-supervised training, we should consider un-
bounded scenes since the RGB images perceive an infinite
range. To this end, we parameterize the occupancy fields to
represent unbounded environments. Specifically, we split
the whole 3D space into the inside and outside regions. The
inside one maintains the original coordinate while the out-
side one adopts a contracted coordinate. Moreover, A spe-
cific sampling strategy is designed to transfer parameterized
occupancy fields to multi-camera depth maps with neural
rendering.

A straightforward way to supervise predicted occupancy
is to calculate loss between rendered images and training
images, which is the same as the loss function used in
NeRF [49]. Unfortunately, our experimental results show
that it does not work well. Instead, we leverage the tem-
poral photometric loss as the supervision signals, which is
commonly used in self-supervised depth estimation meth-
ods [21, 22, 46, 82, 89]. To better leverage temporal
cues, we perform multi-frame photometric constraints. For
semantic occupancy, we propose three strategies to map
the class names to the prompts, which are fed to a pre-
trained open-vocabulary segmentation model [33, 43] to
get 2D semantic labels. Then an additional semantic head
is employed to render semantic images and supervised by
these labels. To verify the effectiveness of our method,
we conduct experiments on both self-supervised multi-
camera depth estimation and semantic occupancy predic-
tion tasks. Experimental results show that our OccNeRF
outperforms other depth estimation methods by a large mar-
gin and achieves comparable performance with some fully-
supervised occupancy methods on nuScenes [7] dataset.

2. Related Work

2.1. 3D Occupancy Prediction

Due to the significance to the vision-centric autonomous
driving systems, more and more researchers begin to fo-
cus on 3D occupancy prediction tasks [8, 9, 25, 29, 67,
68, 73, 78, 86, 91]. In the industry community, 3D occu-
pancy is treated as an alternative to LiDAR perception. As
one of the pioneering works, MonoScene [8] extracts the
voxel features generated by sight projection to reconstruct
scenes from a single image. TPVFormer [29] further ex-
tends it to multi-camera fashion with tri-perspective view
representation. Beyond TPVFormer, SurroundOcc [78] de-
signs a pipeline to generate dense occupancy labels instead
of using sparse LiDAR points as the ground truth. In ad-
dition, a 2D-3D UNet network with cross-view attention
layers is proposed to predict dense occupancy. Rende-
rOcc [54] uses the 2D depth and semantic labels to train
the model, reducing the dependence on expensive 3D oc-
cupancy annotations. Occ3D [67] builds a 3D occupancy
prediction benchmark on nuScenes and Waymo datasets
and proposes the CTF-Occ network. Compared with these
methods, our method does not need any annotated 3D or 2D
labels. Recently, as a preprint work, SimpleOccupancy [17]
presents a simple while effective framework for occupancy
estimation. Although SimpleOccupancy investigates self-
supervised learning, it does not consider infinite range and
semantic prediction.

2.2. Neural Radiance Fields

As one of the most popular topics in 3D area, neural radi-
ance fields (NeRF) [6, 10, 14, 31, 36, 41, 47, 50, 52, 64,
66, 74, 80] have made great achievement in recent years.
NeRF [49] learns the geometry of the scene by optimiz-
ing a continuous volumetric scene function with a set of
multi-view images. To obtain the novel views, volume ren-
dering is performed to convert the radiance fields to RGB
images. As a follow-up, mip-NeRF [2] represents the scene
at a continuously-valued and replaces rays as anti-aliased
conical frustums. Beyond mip-NeRF, Zip-NeRF [4] inte-
grates mip-NeRF with a grid-based model for faster train-
ing and better quality. There are several extensions of origi-
nal NeRF, including dynamic scenes [18, 38, 55, 56, 70],
model accelerating [53, 72, 76, 81, 83], 3D reconstruc-
tion [11, 15, 19, 51, 58, 65], etc. As one of these extensions,
some works aim to describe unbounded scenes [3, 84].
NeRF++ [84] split the 3D space as an inner unit sphere
and an outer volume and proposes inverted sphere pa-
rameterization to represent outside regions. Further, mip-
NeRF 360 [3] embeds this idea into mip-NeRF and ap-
plies the smooth parameterization to volumes. Inspired by
these methods, we also design a parameterization scheme to
model the unbounded scene for occupancy prediction.
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Figure 2. The pipeline of OccNeRF. We first use a 2D backbone to extract multi-camera features, which are lifted to 3D space to get volume
features with interpolation. The parameterized occupancy fields are reconstructed to describe unbounded scenes. To obtain the rendered
depth and semantic maps, we perform volume rendering with our reorganized sampling strategy. The multi-frame depths are supervised
by photometric loss. For semantic prediction, we adopted pretrained Grounded-SAM with prompts cleaning. The green arrow indicates
supervision signals.

2.3. Self-supervised Depth Estimation

While early works [16, 35, 42, 59, 87] require dense depth
annotations, recent depth estimation methods [5, 12, 22,
34, 46, 57, 61, 62, 69, 71, 75, 82, 88, 90] are designed
in a self-supervised manner. Most of these methods pre-
dict depth maps and ego-motions simultaneously, adopt-
ing the photometric constraints [20, 89] between successive
frames as the supervision signal. As a classical work in this
field, Monodepth2 [21] proposes some techniques to im-
prove the quality of depth predictions, including the min-
imum re-projection loss, full-resolution multi-scale sam-
pling, and auto-masking loss. Since modern self-driving
vehicles are usually equipped with multiple cameras to
capture the full view of the surrounding environment, re-
searchers begin to focus on multi-camera self-supervised
depth estimation [23, 32, 60, 63, 77, 79]. FSM [23] is the
first work to extend monocular depth estimation to full sur-
rounding views by leveraging spatio-temporal contexts and
pose consistency constraints. To predict real-world scale,
SurroundDepth [77] uses structure-from-motion to generate
scale-aware pseudo depths to pretrain the models. Further,
it proposes the cross-view transformer and joint pose esti-
mation to incorporate the multi-camera information. Re-
cently, R3D3 [60] combines the feature correlation with
bundle adjustment operators for robust depth and pose es-

timation. Different from these methods, our approach di-
rectly extracts features in 3D space, achieving multi-camera
consistency and better reconstruction quality.

3. Approach

3.1. Overview

Figure 2 shows the pipeline of our approach. With the
multi-camera images {Ii}Ni=1 as inputs, we first utilize a 2D
backbone to extract N cameras’ features {Xi}Ni=1. Then
the 2D features are interpolated to the 3D space to obtain the
volume features with known intrinsic {Ki}Ni=1 and extrinsic
{T i}Ni=1. As discussed in Section 3.2, to represent the un-
bounded scenes, we propose a coordinate parameterization
to contract the infinite range to a limited occupancy field.
The volume rendering is performed to convert occupancy
fields to multi-frame depth maps, which are supervised by
photometric loss. Section 3.3 introduces this part in detail.
Finally, Section 3.4 shows how we use a pretrained open-
vocabulary segmentation model to get 2D semantic labels.

3.2. Parameterized Occupancy Fields

Different from previous works [78, 86], we need to consider
unbounded scenes in the self-supervised setting. On the one
hand, we should preserve high resolution for the inside re-
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gion (e.g. [-40m, -40m, -1m, 40m, 40m, 5.4m]), since this
part covers most regions of interest. On the other hand, the
outside region is necessary but less informative and should
be represented within a contracted space to reduce memory
consumption. Inspired by [3], we propose a transformation
function with adjustable regions of interest and contraction
threshold to parameterize the coordinates r = (x, y, z) of
each voxel grid:

f(r) =

{
α · r′ |r′| ≤ 1
r′

|r′| ·
(
1− (1−α)2

α|r′|−2α+1

)
|r′| > 1

, (1)

where r′ = r/rb is the normalized coordinate of the input r
and f(r) ∈ (−1, 1) indicates the normalized parameterized
coordinate. rb is the bound of the inside region, which is
different for x, y, z direction. α ∈ [0, 1] represents the pro-
portion of the region of interest in the parameterized space.
Higher α indicates we use more space to describe the in-
side region. Note that the two functions in Equation 1 have
the same value and gradient at r = rb. Please refer to the
supplementary material for the derivation details.

To obtain 3D voxel features from 2D views, we first gen-
erate the corresponding points Ppc = [xpc,ypc, zpc]

T for
each voxel in the parameterized coordinate system and map
them back to the ego coordinate system:

P = [f−1
x (xpc), f

−1
y (ypc), f

−1
z (xpc)]

T . (2)

Then we project these points to the 2D image feature planes
and use bilinear interpolation to get the 2D features:

F i = Xi
〈
proj(P, T i,Ki)

〉
. (3)

where proj is the function projecting 3D points P to the
2D image plane defined by the camera extrinsic T i and in-
trinsic Ki, ⟨⟩ is the bilinear interpolation operator, F i is
the interpolation result. To simplify the aggregation pro-
cess and reduce computation costs, we directly average the
multi-camera 2D features to get volume features, which is
the same as the method used in [17, 24]. Finally, a 3D con-
volution network is employed to extract features and predict
final occupancy outputs.

3.3. Multi-frame Depth Estimation

To project the occupancy fields to multi-camera depth maps,
we adopt volume rendering [48], which is widely used in
NeRF-based methods [2, 49, 84]. To render the depth value
of a given pixel, we cast a ray from the camera center o
along the direction d pointing to the pixel. The ray is rep-
resented by v(t) = o+ td, t ∈ [tn, tf ]. Then, we sample L
points {tk}Lk=1 along the ray in 3D space to get the density
σ(tk). For the selected L quadrature points, the depth of the
corresponding pixel is computed by:

D(v) =

L∑
k=1

T (tk)(1− exp(−σ(tk)δk))tk, (4)

where T (tk) = exp
(
−
∑k−1

k′=1 σ(tk)δk

)
, and δk = tk+1 −

tk are intervals between sampled points.
A vital problem here is how to sample {tk}Lk=1 in our

proposed coordinate system. Uniform sampling in the depth
space or disparity space will result in an unbalanced se-
ries of points in either the outside or inside region of our
parameterized grid, which is to the detriment of the opti-
mization process. With the assumption that o is around the
coordinate system’s origin, we directly sample L(r) points
from U [0, 1] in parameterized coordinate and use the in-
verse function of Equation 1 to calculate the {tk}L(v)

k=1 in
the ego coordinates. The specific L(v) and rb(v) for a ray
are calculated by:

rb(v) =

√
(d · ilx)2 + (d · jly)2 + (d · klz)2

2∥d∥
,

L(v) =
2rb(v)

αdv

(5)

where i, j,k are the unit vectors in the x, y, z directions,
lx, ly, lz are the lengths of the inside region, and dv is the
voxel size. To better adapt to the occupancy representation,
we directly predict the rendering weight instead of the den-
sity.

A conventional supervision method is to calculate the
difference between rendered RGB images and raw RGB
images, which is employed in NeRF [49]. However, our
experimental results show that it does not work well. The
possible reason is that the large-scale scene and few view
supervision is difficult for NeRF to converge. To better
make use of temporal information, we employ the photo-
metric loss proposed in [21, 89]. Specifically, we project
adjacent frames to the current frames according to the ren-
dered depths and given relative poses. Then we calculate
the reconstruction error between projected images and raw
images:

Li
pe =

β

2
(1− SSIM(Ii, Îi)) + (1− β)∥Ii, Îi∥1, (6)

where Îi is the projected image and β = 0.85. More-
over, we adopt the techniques introduced in [21], i.e. per-
pixel minimum reprojection loss and auto-masking station-
ary pixels. For each camera view, we render a short se-
quence instead of a single frame and perform multi-frame
photometric loss.

3.4. Open-vocabulary Semantic Supervision

2D semantic labels of multi-camera images provide pixel-
level semantic supervision for semantic 3D occupancy pre-
diction, which helps the network capture geometry consis-
tency and spatial relationships among voxels. To obtain
2D labels, previous works [54] project 3D LiDAR points
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Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

FSM [23] 0.297 - - - - - -
FSM* [23] 0.319 7.534 7.860 0.362 0.716 0.874 0.931
SurroundDepth [77] 0.280 4.401 7.467 0.364 0.661 0.844 0.917
Kim et al. [32] 0.289 5.718 7.551 0.348 0.709 0.876 0.932
R3D3 [60] 0.253 4.759 7.150 - 0.729 - -
SimpleOcc [17] 0.224 3.383 7.165 0.333 0.753 0.877 0.930
OccNeRF 0.202 2.883 6.697 0.319 0.768 0.882 0.931

Table 1. Comparisons for self-supervised multi-camera depth estimation on the nuScenes dataset [7]. The results are averaged over all
views without median-scaling at test time. ‘FSM*’ is the reproduced result in [32] .

(a) RGB image (b) LiDAR projection labels

(c) Our Grounding DINO bboxs (d) Our Grounded-SAM labels

Figure 3. Detection bounding boxes generated by our Grounding
DINO and semantic labels predicted by SAM in our method ex-
hibit precision, which is comparable with that of LiDAR points
projection labels.

with segmentation labels to the image space to avoid the ex-
pensive cost of annotating dense 3D occupancy. However,
we aim to predict semantic occupancy in a fully vision-
centric system and use 2D data only. To this end, we
leverage a pretrained open-vocabulary model Grounded-
SAM [30, 33, 43] to generate 2D semantic segmentation
labels. Without any 2D or 3D ground truth data, the pre-
trained open-vocabulary model enables us to obtain 2D la-
bels which closely match the semantics of the given cate-
gory names. This method can easily extend to any dataset,
making our approach efficient and generalizable.

Specifically, when dealing with c categories, we employ
three strategies to determine the prompts provided to the
Grounding DINO. These strategies consist of synonymous
substitution, where we replace words with their synonyms
(e.g., changing ‘car’ to ‘sedan’ to enable the model to distin-
guish it from ‘truck’ and ‘bus’); splitting single words into
multiple entities (e.g., ‘manmade’ is divided into ‘building’,
‘billboard’, and ‘bridge’ etc. to enhance differentiation);
and incorporating additional information (e.g., introducing
‘bicyclist’ to facilitate the detection of a person on a bike).
Subsequently, we obtain detection bounding boxes along
with their corresponding logits and phrases, which are fed
to SAM [33] to generate M precise segmentation binary

masks. After multiplying the Grounding DINO logits with
binary masks, every pixel has {li}Mi=1 logits. We get the
per-pixel label Spix using:

Spix = ψ(argmax
i

li), (7)

where ψ(·) is a function that maps the index of li to the
category label according to the phrases. If a pixel does not
belong to any categories and gets M zero logits, we will
give it an ‘uncertain’ label. The generated detection bound-
ing boxes and semantic labels are shown in Figure 3.

To leverage the 2D semantic supervision, we initially uti-
lize a semantic head with c output channels to map volume
features extracted to semantic outputs, denoted as S(x).
Similar to the method outlined in Section 3.3, we engage
in volume rendering once more using the subsequent equa-
tion:

Ŝpix(r) =

Ls∑
k=1

T (tk)(1− exp(−σ(tk)δk))S(tk), (8)

where Ŝpix represents the per-pixel semantic rendering out-
put. To save the memory and improve efficiency, we do not
render the pixels that are assigned with ‘uncertain’ labels.
Moreover, we only render the central frame instead of mul-
tiple frames and reduce the sample ratio to Ls = L/4. Our
overall loss function is expressed as:

Ltotal =
∑
i

Li
pe + λLi

sem(Ŝpix,Spix) (9)

where Lsem is the cross-entropy loss function and λ is the
semantic loss weight.

4. Experiments
4.1. Experimental Setup

Dataset: We conduct experiments on the popular large-
scale autonomous driving dataset nuScenes [7], which con-
tains 600 scenes for training, 150 scenes for validation, and
150 for testing. The dataset has about 40000 frames and
17 classes in total. For self-supervised depth estimation,
we project LiDAR point clouds to each view to get depth
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MonoScene [8] ✓ 6.33 6.06 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 7.92 7.43 1.01 7.65
BEVDet [28] ✓ 20.03 19.38 30.31 0.23 32.26 34.47 12.97 10.34 10.36 6.26 8.93 23.65 52.27 26.06 22.31 15.04 15.10
BEVFormer [39] ✓ 24.64 23.67 38.79 9.98 34.41 41.09 13.24 16.50 18.15 17.83 18.66 27.70 48.95 29.08 25.38 15.41 14.46
OccFormer [86] ✓ 22.39 21.93 30.29 12.32 34.40 39.17 14.44 16.45 17.22 9.27 13.90 26.36 50.99 34.66 22.73 6.76 6.97
RenderOcc [54] ✓ 24.53 23.93 27.56 14.36 19.91 20.56 11.96 12.42 12.14 14.34 20.81 18.94 68.85 42.01 43.94 17.36 22.61
TPVFormer [29] ✓ 28.69 27.83 38.90 13.67 40.78 45.90 17.23 19.99 18.85 14.30 26.69 34.17 55.65 37.55 30.70 19.40 16.78
CTF-Occ [67] ✓ 29.54 28.53 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 37.98 33.23 20.79 18.00

SimpleOcc [17] × 7.99 - 0.67 1.18 3.21 7.63 1.02 0.26 1.80 0.26 1.07 2.81 40.44 18.30 17.01 13.42 10.84
OccNeRF × 10.81 - 0.83 0.82 5.13 12.49 3.50 0.23 3.10 1.84 0.52 3.90 52.62 20.81 24.75 18.45 13.19

Table 2. 3D Occupancy prediction performance on the Occ3D-nuScenes dataset. Since ‘other’ and ‘other flat’ classes are the invalid
prompts for open-vocabulary models, we do not consider these two classes during evaluation. ‘mIoU*’ is the original result and ‘mIoU’ is
the result ignoring the classes.

ground truth for evaluation. Following SurroundDepth [77],
we clip the depth prediction and ground truth from 0.1m to
80m. To evaluate the semantic occupancy prediction, we
use Occ3D-nuScenes [67] benchmark. The range of each
sample is [-40m, -40m, -1m, 40m, 40m, 5.4m] and the voxel
size is 0.4m. Among 17 classes, we do not consider ‘other’
and ‘other flat’ classes for evaluation since open-vocabulary
models cannot recognize the semantic-ambiguous text. Fol-
lowing [67, 77], we evaluate models on validation sets.

Implementation Details: We adopt ResNet-101 [26] with
ImageNet [13] pretrained weights as the 2D backbone to ex-
tract multi-camera features. The resolution of input images
and rendered depth maps are set as 336x672 and 180x320
respectively. The predicted occupancy field has the shape
300x300x24. The central 200x200x16 voxels represent in-
side regions: -40m to 40m for X and Y axis, and -1m to
5.4m for the Z axis, which is the same as the scope defined
in Occ3D-nuScenes. We render 3 frames depth maps, which
are supervised by the photometric loss with a sequence of 5
frames raw images (1 keyframe with 4 neighbored non-key
frames). The α is set as 0.667. To predict semantic oc-
cupancy, the Grounded-SAM [33, 43] is employed as our
pretrained open-vocabulary model. The text and box thresh-
olds are set as 0.2 and we use the loss weight λ = 0.05 . All
experiments are conducted on 8 A100.

Evaluation Metric: For depth estimation, we use the com-
monly used depth evaluation metrics [21, 77, 89]: Abs Rel,
Sq Rel, RMSE, RMSE log and δ < t. The Abs Rel is the
main metric and see supplementary for the details of these
metrics. During evaluation, we do not perform median scal-
ing since our method can predict real-world scale. For se-
mantic occupancy prediction, we use the mean intersection
over union (mIoU) of all classes for evaluation. Follow-

ing the evaluation tool in Occ3D-nuScenes, the evaluation
is only performed on the ‘observed’ voxels in camera views.

4.2. Self-supervised Depth Estimation

Table 1 shows the self-supervised multi-camera depth es-
timation results on nuScenes dataset. We do not use pre-
trained segmentation model in this experiment. The re-
sults are averaged over 6 cameras and ‘FSM*’ is the re-
produced FSM [23] result reported in [32]. We can see that
our method outperforms other state-of-the-art methods by a
large margin, demonstrating the effectiveness of OccNeRF.
Compared with depth estimation methods, our method di-
rectly predicts occupancy in 3D space, naturally guarantee-
ing multi-camera consistency. Moreover, we do not need to
lift 2D depth maps to 3D point clouds with post-processing.

4.3. Semantic Occupancy Prediction

We conduct semantic occupancy prediction experiments on
the Occ3D-nuScenes dataset. Since the pretrained open-
vocabulary model [33, 43] cannot recognize ambiguous
prompts such as ‘other’ and ‘other flat’, we remove these
two classes during evaluation. For another self-supervised
method SimpleOcc [17], we use the same 2D semantic la-
bels from the pretrained model for fair comparison. As
shown in Table 2, our method outperforms SimpleOcc by
a large margin and even gets comparable performance with
some full-supervised methods. For some classes, such as
‘drivable space’ and ‘manmade’, our method surprisingly
surpasses all supervised methods. However, we note that for
some small object categories (e.g. bicycle and pedestrian),
the gap between our method and state-of-the-art supervised
methods is large. The possible reason is that the current
open-vocabulary model often misses small objects and fails
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Depth Multi Abs Rel RMSE δ < 1.25
0.627 15.901 0.051

✓ 0.489 9.352 0.362
✓ 0.216 6.752 0.764
✓ ✓ 0.202 6.697 0.768

Table 3. The ablation study of supervision method. ‘Depth’ means
whether we use the temporal photometric constraints to train the
model. If not, we directly utilize the supervision method in NeRF
[49]. ‘Multi’ indicates whether we employ multi-frame rendering
and supervision.

Figure 4. Qualitative comparison of different coordinates. The
second line indicates the results without using coordinate parame-
terization. With the ability to represent unbounded environments,
our method can get better results in far scenes, such as the sky.

to provide strong supervision.

4.4. Ablation Study

Supervision Method: A straightforward supervision signal
is the difference between the rendered and true pixel colors,
which is the same as the loss function used in NeRF [49].
However, as shown in Table 3, this supervision method
yields terrible performance. We attribute this to the chal-
lenge NeRF faces in learning the scene structure with only
six views. On the contrary, temporal photometric loss can
better leverage geometric cues in adjacent frames, which is
the golden metric in self-supervised depth estimation meth-
ods. Moreover, multi-frame training provides stronger su-
pervision, further boosting the model’s performance.
Coordinate Parameterization: Table 4 shows the ablation
study of coordinate parameterization. Different from occu-
pancy labels, the photometric loss assumes that the images
perceive an infinite range. The aim of the contracted coordi-
nate is to represent the unbounded scene in a bounded occu-
pancy. From the table, we can see that the contracted coor-
dinate greatly improves the model’s performance. In addi-
tion, since the parameterized coordinate is not the Euclidean
3D space, the proposed sampling strategy works better than
normal uniform sampling in the original ego coordinate.
Semantic Label Generation: In this subsection, we con-
duct ablation studies of semantic label generation on the

CC Resample Abs Rel Sq Rel δ < 1.25
0.216 8.465 0.694

✓ 0.208 7.339 0.743
✓ ✓ 0.202 6.697 0.768

Table 4. The ablation study of coordinate parameterization. ‘CC’
means that whether we adopt contracted coordinates. ‘Resample’
indicates whether we leverage the proposed sampling strategy.

(a) RGB image (b) Our Grounded-SAM labels

(c) Labels with SAM logits (d) Labels w/o prompting strategies

Figure 5. Comparison of different semantic label generation meth-
ods. Compared with generating semantic labels with SAM logits
or feeding raw category names, our semantic labels are preciser
and have better continuity.

Occ3d-nuScenes dataset. First, we change grounding
DINO [43] logits as SAM logits [33] to get semantic labels.
As shown in Table 5 and Figure 5, we find that the SAM
logits are more noisy and discontinuous. Then, we also feed
raw category names to the open-vocabulary model without
proposed prompting strategies. However, this method leads
to worse results since the original class names cannot pro-
vide fine-grained semantic guidance and bring ambiguity.

Method mIoU

SAM logits 7.50
category names 8.23

Ours 10.81

Table 5. The ablation study of semantic label generation. ‘SAM
logits’ means that we directly use the logits from SAM [33].
’Catagory names’ means that we feed raw catagory names to the
pretrained open-vocabulary segmentation model and do not adopt
any prompting strategy.

4.5. Visualization

To further demonstrate the superiority of our method, we
provide some qualitative results in Figure 6 and 7. From
Figure 6, we can see that our method can generate high-
quality depth maps and occupancy with fine-grained details.
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Figure 6. Qualitative results on nuScenes dataset [7] . Our method can predict visually appealing depth maps with texture details and
fine-grained occupancy. Better viewed when zoomed in.

front left front front right back left back back right

Figure 7. Qualitative results of semantic occupancy on nuScenes dataset [7]. Our method can predict visually appealing semantic occupancy
with well geometry correspondence. Better viewed when zoomed in.

See supplementary material for more qualitative compar-
isons with other methods. For semantic occupancy predic-
tion, as shown in Figure 7, our OccNeRF can reconstruct
dense results of the surrounding scenes, especially for the
large-area categories, such as ‘drivable space’ and ‘man-
made’.

5. Limitations and Future Works

During inference, we investigate single-frame occupancy
prediction and do not consider multi-frame information as
inputs. Therefore, our method is unable to predict occu-
pancy flow. For future work, we will try to use a pretrained
optical flow model to supervise the occupancy flow and

8



Figure 8. Comparison between original space and parameter-
ized space. The original space utilizes the conventional Euclidean
space, emphasizing linear mapping. The parameterized space is
divided into two parts: an inner space with linear mapping to pre-
serve high-resolution detail and an outer space where point distri-
bution is scaled inversely with distance, facilitating the represen-
tation of an infinite range within a finite spatial domain.

adopt multi-frame multi-camera images as inputs. Further,
another limitation is that the performance of our method is
bounded by the outputs of open-vocabulary segmentation
models, which often neglect small objects.

6. Conclusion

In this paper, we propose OccNeRF for self-supervised
multi-camera 3D occupancy prediction. To tackle the un-
bounded scenes, we propose the parameterized occupancy
fields to contract the infinite space to a bounded voxel. To
leverage temporal photometric loss, volume rendering is
performed on parameterized coordinates to obtain multi-
frame multi-camera depth maps. For the semantic occu-
pancy prediction, we utilize an open-vocabulary model to
get 2D semantic pseudo labels with the proposed prompt
cleaning strategies. The experimental results on nuScenes
dataset demonstrate the effectiveness of our method.

Appendix

A. Parameterized Occupancy Fields Deriva-
tion

The objective of utilizing parameterized coordinates is to
encapsulate an infinite range within a confined spatial do-
main. This concept is illustrated in Figure 8, where the spa-
tial domain is bifurcated into two distinct regions: the inner
space and the outer space. The inner space retains a linear
mapping to ensure the preservation of high-resolution de-
tails. Conversely, in the outer space, point distribution is
executed in proportion to disparity, which inversely relates
to distance. Consequently, the transformation function is
articulated as follows:

f(r) =

{
α · r′ |r′| ≤ 1
r′

|r′| ·
(
1− a

|r′|+b

)
|r′| > 1

, (10)

Original labels Ours
car sedan

bicycle bicycle bicyclist
vegetation tree
motorcycle motorcycle motorcyclist

drivable surface highway
traffic cone cone

construction vehicle crane

manmade building compound bridge
pole billboard light ashbin

Table 6. Implementation details of prompt strategy.

where r′ = r/rb denotes the normalized coordinate based
on the input r. The parameters a and b are introduced to
maintain the continuity of the first derivative. The determi-
nation of these parameters is achieved through the resolu-
tion of the ensuing equations:

lim
r→r+b

f(r) = lim
r→r−b

f(r)

lim
r→r+b

f ′(r) = lim
r→r−b

f ′(r)
, (11)

The derived solutions are presented as:{
a = (1−α)2

α

b = 1−2α
α

. (12)

B. Semantic Label Generation Details
In Section 3.4 of main paper, we present a concise overview
of the generation of semantic labels using our open-
vocabulary model, Grounded-SAM [30, 33, 43]. We em-
ploy three prompt strategies to manually refine the category
names fed into Grounding DINO [43]. To illustrate these
strategies, we focus on the semantic labels for occupancy
in the Occ3D-nuScenes [67] benchmark and provide a de-
tailed explanation.

Specifically, for the synonymous substitution strategy,
we substitute ‘car’ with ‘sedan’ to enhance model discrim-
ination, replace ‘vegetation’ with ‘tree’ to improve detec-
tion rates, and change ‘driveable surface’ to ‘highway’ to
aid the model in distinguishing it from ‘sidewalk’. In
the case of splitting the word strategy, we change ‘man-
made’ to ‘building’, ‘compound’, ‘bridge’, ‘pole’, ‘bill-
board’, ‘light’, and ‘ashbin’, among others. Moreover, we
employ the incorporating additional information strategy,
introducing prompts such as ‘bicyclist’, ‘motorcyclist’, and
‘barricade’. Finally, we modify ‘traffic cone’ to ‘cone’ and
‘construction vehicle’ to ‘crane’ due to the bad performance
of Grounding DINO [43] when processing original phrases.
Readers can refer to Table 6 for our prompts replacement.
For hyperparameter, we set both ‘BOX TRESHOLD’ and
‘TEXT TRESHOLD’ of Grounding DINO [43] to 0.20.
We find that the open-vocabulary model has difficulty to
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Figure 9. Qualitative comparison on the nuScenes dataset. Better viewed when zoomed in.

deal with long prompts. Thus, we further organize our re-
fined prompts into several groups instead of feeding them
together, allowing our open-vocabulary model to generate
detection frames for each group sequentially.

C. Evaluation Metrics
The detailed evaluation metrics of self-supervised depth es-
timation can be described as follows:
• Abs Rel: 1

|T |
∑

d∈T |d− d∗|/d∗,
• Sq Rel: 1

|T |
∑

d∈T |d− d∗|2/d∗,

• RMSE:
√

1
|T |

∑
d∈T |d− d∗|2,

• RMSE log:
√

1
|T |

∑
d∈T | log d− log d∗|2,

• δ < t: % of d s.t. max( d
d∗ ,

d∗

d ) = δ < t,
where d and d∗ indicate predicted and ground truth depths

respectively, and T indicates all pixels on the depth image
D. In our experiments, all the predicted depth maps are
scale-aware and we do not perform any scale alignment.

D. More Experimental Results

Per-camera evaluation: We give the per-camera com-
parisons of our method with previous works on the
nuScenes [7] dataset in Table 7. Our method outperforms
other methods across all cameras, with a particularly high
improvement in side views.
Qualitative Comparisons: Figure 9 shows qualitative
comparisons on nuScenes [7] validation set. We visualize
several state-of-the-art depth estimation and occupancy pre-
diction methods’ results with their official codes. Compared
with the these methods, our occupancy-based method has
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Abs Rel ↓
Method Front F.Left F.Right B.Left B.Right Back

FSM [23] 0.186 0.287 0.375 0.296 0.418 0.221
SurroundDepth [77] 0.179 0.260 0.340 0.282 0.403 0.212
R3D3 [60] 0.174 0.230 0.302 0.249 0.360 0.201

Ours 0.132 0.190 0.227 0.204 0.289 0.169

Table 7. Per-camera comparisons for scale-aware multi-camera
depth estimation on the nuScenes dataset. Tests are conducted
within 80 meters.
fewer artifacts and better overall accuracy.
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